Homework 2, MATH 40910, Spring 2022 Due on Wednesday February 9th 2022. - 1. Give a proof of the Craig interpolation theorem, Exercise 13, following the discussion in class. - 2. Let F and G be formulas (involving only \neg , \lor , \land). - (i) Let F_1 result from F by replacing each literal L by \bar{L} , each \wedge by \vee and each \vee by \wedge . Prove that $F \equiv \neg F_1$. - (ii)* Let F' result from F by replacing every \vee by a \wedge and every \wedge by a \vee . Likewise for G'. Suppose $F \equiv G$. Prove that $F' \equiv G'$. (Hint: Use part (i).) - 3. Using the equivalences in the Theorem on p. 15, and the substitution theorem, prove that the formula $((A \vee \neg (B \wedge A)) \wedge (C \vee (D \wedge C)))$ is equivalent to C. - (ii) Prove that every formula F is equivalent to a formula in conjunctive normal form with the same atomics (using truth tables in a similar way to what we did in class for disjunctive normal form). - 4. Which of the following are true? Explain your answers, namely give a proof or counterexample. - (a) All unsatisfiable formulas are equivalent. - (b) All satisfiable formulas are equivalent. - 5. (i) Let the formula F have at most the connectives \to , \wedge , \vee . Show that if \mathcal{A} is an assignment suitable for F such that $\mathcal{A}(A) = 1$ for all atomic formulas $A \in dom(\mathcal{A})$, then $\mathcal{A}(F) = 1$. - (ii) Conclude that (for B an atomic fornula) $\neg B$ is not equivalent to any formula containing only the connectives \rightarrow, \land, \lor and possibly containing other atomics in addition to B.